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Abstract

This paper presents an efficient method for extracting a multi-model interpolation function from a
nonlinear sysem. The multi-modd interpolaion function condsts of couple smplified timevarying
moddsin neurd-network structure to dynamicaly approximeate the nature of the physica phenomenato
be interpolated and extrgpolated. The purpose of using the multi-model interpolation function is to
peform a red-time gpproximation. This paper demondrates the interpolation in a smulated
environment, the underwater acoustic transmission loss generated from the NAVY -stlandard acoustic
propagation-loss model ASTRAL, which is not suited to red-time operation. The interpolation
includes initid learning period that is on the order of 20 minutes (more or less time depends on the Sze
of the parameter intervals and the complexity of the ocean environment), and the subsequent
interpolation speed will be measured in fractions of a second, a severa orders-of-magnitude
improvement over conventional cadculations.  In addition, for the example presented here, the
interpolation error is within 1% of the actud transmisson-loss vaue in a root-mean-square (RMS)
sense.

Keywords: Multi-model Inter polation; Multi-objective SPSA; Nonlinear Interpolator; Neural
Network; Nonlinear acoustic wave function.

1 Introduction

This paper develops a modd-fitting technique to perform the interpolation and extrgpolation of a
nonlinear time-varying system. The development is demongtrated on the problem of transmission |oss of
underwater sound. The technique involves smplified timevarying multiple models, neura networks
(NN), and multi-objective smultaneous perturbation stochastic gpproximation (MSPSA).  The
amplified models represent the locd phenomena that change in time; NN projects the mode variations,
MSPSA trains the NN-weights. The MSPSA was fird introduced in Chin [1] and is based on the
smultaneous perturbation stochastic gpproximation (SPSA) developed by Spdl [2]. A collection of
goplications of NN in adaptive control of nonlinear systems can be found in Ng [3]. The localized
multi-model technique has shown accuracy and efficiency in the transmission loss interpolation.

The transmisson loss function is highly oscillatory and quite varigble.  There is no ample
representation available to describe the sound wave propagation accurately. The various loca medium
interactions and reflections give the function its erratic Sructure. An interpolation method suggested for
time-variant systems in Gohberg (Ed.) [4, pp. 153-259] was too complicated and worked only on a
sngle modd. In a previous study, a linearized interpolation gpproach, a smple linear fit between
observed data points, was suggested and tried in FY' 98 Progress Repot to DARPA [5]. Although the
linearized interpolator would save computation time over the actud sSmulation caculation, the
preparation of the base transmisson loss curves and the massve amount of data handling ultimately
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make the linearized interpolation intractable. Also, the resulting interpolation errors were not uniform
throughout the parameter space interval desired for the interpolation.

This particular model-fitting design uses two independent neurd networks as the base of
interpolation. The modeds are designed to fit the locd physica phenomena and the NN's store the
modd variation information. The interpolator is expected to gpproximate the sound wave transmisson
loss accurately within the training area aong the transmission pass, therefore the training process should
provides NN the intermittent information. There are two ways to provide the intermittent information:
1) from an accurate modd representation for the inverse estimation like the one introduced in Chin [1];
or 2) the intermittent observations derived from a base mode like the ones discussed here for
interpolation. The intermittent observations are accessble in most smulation packages; the utilization
alows the modd-fitting technique to use less number of smulated transmisson passes and to gain more
information in preparation of the interpolator.

In comparison with a smple linearized interpolator, the modd-fitting technique described here
requires longer time per interpolation, but takes orders of magnitude less preparation time. The
interpolation time for the mode-fitting technique in comparison with the detalled smulation time is
negligible. The example presented in this paper shows that using 10 propagation loss curves is enough
to train the interpolator for a large portion of the parameter space where interpolation is desred. The
base-propagation loss curves for linearized interpolation would use order of magnitude amount more
transmisson curves to achieve a comparable level of accuracy. The ability to use a few propagation-
loss curves to train the NN-weights for accurate interpolation makes the mode-fitting technique
dedrable in planing a red-time smulation-traning misson that was questionable for the linearized
interpolator.

The NN-weight training procedure dso is a very important task for the interpolator; it should
congder the matches for intermittent points and the divergent of two different objectives in the two
models. Given the varigbility and oscillatory behavior of the function, the training process aso should
have some checks and baances. One way to ded with the multiple-objective problem is summing
these objectives and forcing them into a single objective dgorithm. However, it is then very hard to find
the balance among the objectives and the convergence speed, see Chin [1]. The MSPSA dgorithm
introduced in Chin [1] optimizes the independent modd parameter sets (the parameters in one set have
no relaionship with the parameters in other set) from relevant objectives and is suitable for training the
NN-weights here. Also, the parameter dependencies are different for the two models, the agorithm
could tailor the minimization procedure to accommodate the differences. In the end, MSPSA used
smdl number of detailed smulation curves to train the interpol ation functions, achieved acceptable root-
mean-sguare errors from the origind smulation results, and made red-time operation feasible.

2 Underwater Sound Transmission Loss

Follow the principle of underwater sound in Urick [6], the sound propageating through the ocean was
described in three physical phenomena



- Sound spreads while it propagates through the medium in three different ways sphericdly,
cylindricaly, and linearly.

- The medium absorbs sound energy, with the rate of absorption varying with the water temperature
and the acoudtic frequency.

- Sound dgnds are a0 influenced by the reflections from the top and bottom of the ocean water
column. This influence is a function of the loca bottom bathymetry and composition, as well as the
sea surface conditions (wave height).

These three effects dso vary with the frequency of the sound signd.

Using two models could describe these three phenomena. One modd gpproximeates the energy
goreading and absorption because their equations are smilar; the other mode approximates the
reflections. The energy dissipation moddls dependents on water temperature at the referenced local
aress, the reflection mode depends on both site structures and range from the sound source.

The transmission losses are represented as a ratio of the sound intengity a a given range, say p
nmi, to the intendity of a reference range. If TL represents the transmission lossand T represents the
ggnd intensty, the sub-indexes represent the values evaluated at the reference points, respectively.
Then, the relation between the tranamisson loss and signd intengity are as following:

TL, :10|og§%% @)
0@

Theintendty T changes dong the transmission passin a
non-linear pettern. For easer to approximate the
intengity reduction, the sound propagation (the thick line : L7 0
indde the box on Figure 1) is divided into a fine fixed- |
interval grid, the grid points are located at unit marks for
convenience of data handling, in our study here uses Range

nautical mile marks. The marks O, p on Fig. 1 are the

reference points near source and at receiver. The marks Figure 1: The reference points and sound propagation
1,2,---,k are the reference points on the grids. pass
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The total sound transmission loss between source and recelver could be expressed as the
accumulation of transmission losses aong the pass, as shown in (2); an expansion of Equation (1):

2T,

d,0 € o) aT, ol
TL_ =10loge22+ A0 loggert—2+-- +10logert 27 )
O S T %
The examples in Section 5 use the nautical mile as grids and 3-ft as the initid O reference points. The
recaiver mark p islocated between gridsk and k+1 include k+1.



At each reference points, i1 {0,1,--,k, p} » the transmission loss is dso the total effect from dl three
individua physical effects that are represented by two models. Let 15and T be the signd intensty

reduction vaue due to energy disspation and reflection between the reference pointsi - 1and i. The
total sound wave intensity at the reference point i would be

T =d(TF - T7). 3

where d is the distance between interpolating position and reference point i - 1, in (3) the interpolating
position is the position of reference point i. Subdtitute T " jinto (2), and then computes the total

transmission loss from source to recave.

Tosdmulaer, from detailed non-linear models are both computationa and computer /O intensive
operations. Simplification of the data structure and retrieva system are the first couple steps in reducing
the computationa burden and data handling problems. Because mass amount of data for the water
temperature profiles and detailled ocean basin information along the transmisson pass are required in
computing the transmission losses from the non-linear accurate models. This paper utilizes a pair of NN
for so purpose.

The equation for energy dissipation intensity reduction formula TF is a Smple condant varying
mogtly with the water temperature (assuming uniform vaue within two reference points) and could

theoreticaly have vaue range between 0 and 3 (not including 0). For generdity, the equetion is
expressed in two degree of freedom among T’ sasfollowing:

T,E = sgi- —=, (4)

where sand r are two congtants with values between 0 and 1 that will be the output from NN (the
outcome could be in expected range for the interpolation area of interests, instead of the theoretica
range). Thereisno smple expression for T*. This paper uses the first order of trigonometric function

to represent the energy gain from reflection as following:

TR = acos@wﬂ O bs n?]_p'g', ©)
e720g e720g

wherea, b, f, andj are four coefficients and would be the output from NN, p is the radian congtant,

3.14159---. This equation may be changed due to environmenta differences, e.g., with a higher order
representation for a more complicated environment.

The neura-networks are designed for tracking the variations of the coefficients used in (4) and (5)
among the intengty reduction functions due to environmenta change aong the tranamisson pass. The
neurad-network for the energy dissipation modd is atwo-hidden layer network with four inputs and two
outputs. The number of weights for each of the two-hidden layers is five. The four inputs are
frequency, source depth, depth a theinitid reference point, and delta range from the interpolation point



to the initid reference point. The two outputs denoted by sand r ae the spreading factor and
absorption rate as defined before. The neura-network for the reflection model is a one-hidden layer
network with four inputs and four outputs. The number of weights for the hidden layer should be
changed according to the size of the geographica area, the bottom type and the sound frequency; a
larger area, more complex bottom types and higher frequencies will use a larger number of the NN-
weights. The inputs for this network are frequency, source depth, depth at the initid reference point,
and range of the range from source. The outputs for this network are the coefficients of a trigonometric
equation.

3 Interpolation Setting

The underwater sound transmission loss can be expressed in a more genera term, such as a system y
consists of two models denoted by 1.y andg(.), and

y=F(f()al)), (6)

where the function F is nonlinear and modd f and g are varying with time. The value of y can be
accumulated from a sequence of intermediate function valuesy, and

_ 4
y=ay, (7)
i=0
where 'y, is evaluated at the reference pointi and i1 {0,1,---,k, p}. Reference points 0 and p are located
a the boundary points, reference points {1.....k} ae located a the internd grid points aong the
transmission pass. Theindividud y; isaso afunctionof f,(-) and g,(-) ad

y, = F(f,(: ) o) (8)

Assuming the functions f,(-)" i can be approximated by the same function with different coefficients
such asthe onein (4), likewisefor g (-)" i astheonein (5).

Let NN denote a neural network, with NN; and NNy the neural networks for modes f and g,
respectively. Assume x:; and Xg; aretheinput terms of NN; and NNy at the interval between reference
pointsi-1 andi. Then,

X, ® NN, ® f,

, 9
X, ® NN, ® g ©

where f and g are the neura network output parameters associated with the two models at the same
intervel and will be used as the coefficients of f(-) and g(-). Then these two functions could be
defined as f,(x,, |w,) ad g,(x,, lw,), where w, w arethe weights of NN;, NNg. Function f (-) isthe



function of x;; based on the weight values of NNi; smilarly function g (-) isthe function of Xy, based on
the weight values of NN,. Letq, q,be the estimated variables forw, ,w,and § be the approximation
vauefory and

yzé)b':[fi(xf,i |df)1gi(xg,i |dg)] (10)

We are trying to minimize (y - §)* and combinationsof (y, - y ) for dl transmission loss curves to find
the bet fit q,,q, 0fw,,w, . Then we could use § as an interpolation vaue from the given sets of input
{x, .} and{x,,}, i.e. theinput parameters defined a the reference points adong sound transmission pass

asthey are define in Section 2. This setting may easily be expanded into a system that involves more
than two modeds and may aso be used in a control environment.

4  TheTraining Algorithm

The multiple-objective smultaneous perturbation stochastic gpproximation (MSPSA) dgorithm
presented in [1] is usad to train the neurd-network weights. The agorithm attempts to minimize the
sum of the square difference between interpolation vaues and the computed vaues over the loca
intervals, the reference points assumed in the derivation of the equations, as well as the entire data
range. The differences are calculated at each computed vaue, according to the resolution of the data.
The minimizations are completed over iterations. Any single iteration conssts of many small steps from
the individua minimizations that are sequenced one-by-one; let us call the small step a minimization step.
The estimates of one minimization-step will be passad to the next step in the sequence as the previous
edimates of that ep. The estimates from the last Sep in the sequence will be the estimates of the
itertion. The estimates of the iteration will be passed to the first minimization step in the next iteration
as the previous estimate of that step. This optimization agorithm assumes the data was generated with a
condstency sHtting, smilar environment or limited inteference. Smulaion data has less of a
consigtency problem then the redl data. Even the inconsistency does exist among the data, the order of
the step sequence will not affect the outcome of the estimates, and it just effects the convergence speed.
The minimization-step procedure uses the equation stated in [2] as an iteration of the SPSA agorithm,
usng two datistical perturbation estimates to gpproximate a gradient that updates the previous
estimates.

For convenience, let f represent the energy disspation modd and g represent the reflection modd for
the underwater sound transmission loss system.  The subscript-index i indicate the loca ranges aong
the transmission loss curve. Figure 2 shows the detailed training procedure of “one iteration” asfollows:

1) Sarting from the initid estimates or the previous iteration estimates, the first step (box 1) is to
minimize the local differences between yi and g, (f,(x,, I, )Ig(x,, Id, ) on the weights of NN while

holding the weights of NNy unchanged.

2) Using the 1% step estimates as the initids, the 2 step (box 2) minimizes the full range difference
betweeny and (g, (x,, 16, )1 f (x;, 1d, )" i) on the weights of NNy while holding the weights of NN;
unchanged.



3) Initidizing from the 2™ step estimates, the 3 step (box 3) minimizes the summation of the square
differences between y; and 9i(f (xf,i |9, ),g(xg’i la, )) on the weights of NN and NN, for aglobd fit.

4) Box 4 —indicates repeating steps 1, 2, and 3 for al source-receiver (SR) pairs.

5) Box 5 evduations the estimates of weights on both NN; and NNg.  If the estimation error, e, is
greter than 1.20e , , the last known sméllest error, then reject the estimates and repest the
previous 4 geps. If the estimation error is within 1.20e ., then update the weights on both NN;
and NNy and proceed to the next iteration.

min’

v 1
min(y; - §F fod  with fixedd,
I 2
mir(y- 9 fordl, with fixed
| 3
. P ~ ~ ~
m'”go(yi - Yi)z for bothd &0,
|
v 4
Repeat 1 — 3 for every pair of SR

5
no c
— S Next Iter.

Figure 2 One Iteration of Training Algorithm

5. Example

ASTRAL (the Automated Signa Excess Prediction System (ASEPS) TRANnSmisson L0oss), is a Navy
gtandard model, included in the Navy’s Ocean and Atmospheric Master Library (OAML). OAML is
a collection of configuration-controlled modes and databases, maintained by the Nava Oceanographic
Office (NAVOCEANO). ASTRAL was specificadly designed to run rapidly, and is commonly used in
red-time smulations because it runs 10 to 1000 times faster than the traditionally more accurate
parabolic equation (PE) models, as well as other research models.

ASTRAL is primarily a range-dependent, adiabatic, range-smoothed mode theory model, with
additional separate adgorithms to mode important acoustic features that are not appropriately handled in
the primary dgorithm. In particular, ASTRAL uses separate agorithms for convergence zone and
surface duct propagation [6]. ASTRAL can predict the range averaged transmission loss and vertica
angular arriva dructure, but only the former quantity is considered here,

The selected modd is expected to be run for al propagation caculations required during the Navy
amulationsin which is used. Therefore, ASTRAL was run for avariety of environmenta conditions and
operationa parameters deemed reasonable for the smulation.



Assuming a smulation for purposes of red-time operator training, the oceanographic environment
for this example was located in the Sea of Japan. For smplification, a Sngle set of propagation paths
with varying bathymetric details was used in the example. The differences between each of the paths
were in the receiver depth, source depth, sound frequency, and transmission range. We assumed that a
recelver was placed a certain discrete depths in a 200-ft interva from the surface, with the source
placed at various depths between the surface and 1500-ft. Each source and receiver par was
generated using different frequencies, from 20 Hz to 10000 Hz. The totd transmission range was 102
nmi; the resolution to which ASTRAL generated was 0.25 nmi.

The receiver depth, source depth, frequency, and transmission range define the parameter space
interval desired for the interpolation, or the interpolation area, which aso defines the red-time operator
traning area. In order to have the interpolator work properly; it has to learn the characterigtics of the
transmisson loss from the data computed
within the interpolaion area The main z
criterion for data sdection is that the
Selected data has to contain dl the important
features in the area. For the time being, we -
were usng trid and eror to sdect 10
source-receiver pairs, eech of them a a
different frequency. Figure 3 shows the
transmission loss surface formed by the 10
selected source-receiver pairs. The Y-axis
in the Figure indicates the 10 sdlected pairs
from 1-10; the X-axis indicates the tota
transmission range from 1 — 102 (102 nmi in 1
0.25 nmi resolution); and the Z-axis shows
the scales of the transmission losses from 50 Figure 3ASTRAL Generated Transmission Loss Surface
dB to 100 dB.

Figure 4 shows the transmisson loss surface formed by the interpolation vaues a the same grid
points as in Figure 2. The interpolator learned the features from the firgt haf of the range data, within
50 nmi. Figures 3 and 4 show the matching surface on the left haf of the surfaces (shorter ranges < 50
nmi), while missng some characterigtics on the right half of the surfaces (beyond 50 nmi). When we
included dl of the range data to train the interpolator, the spike on the top-left end of the surface in
Figure 4 was cealy shown on the surface formed by the interpolaion vaues resulting from that
interpolator. The RMS error for the transmission loss surface in Figure 4 is 0.5 dB, about 1 to 2% of
the actud lossvadlues. The interpolator surface showed in Figure 4 takes 360 iterations, for red-time
operation 200 iterations would be sufficient for a 25-nmi range operation area; the RMS error for the
smdler range operation area was about 1 dB in the case mentioned in the abstract. Using the more
detailed smplification models, f and g, would have less RMS errors, but they will take a longer time

to train.



6. Summary

Z This paper presents a modd-fitting technique for
o use as an interpolator for underwater acoustic
7 transmisson loss. This interpolator could be
useful in creating function gpproximation for one
locd doman in the adaptive interpolator
discussed in Spdl [8]. The eror of this
interpolator was tolerable and the computation
speed was adequate for red-time training
s operations.  There is a tradeoff between
. accuracy and desired speed 3 the more
- accuracy required the more time required for the
o NN to train. Thereis aso atradeoff between the
Figure 4 Interpolated and Extrapolated Transmission Loss accuracy and the complexn_y of the opergtlond
Surface. aea There is room for improvement in the
optimum source-receiver pair sdlection and in the
edimation modd formulaions This technique

could be used for extrapolation and inversion processes.
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